MakeItFrom.com
Menu (ESC)

EN 1.3940 Stainless Steel vs. EN 1.4961 Stainless Steel

Both EN 1.3940 stainless steel and EN 1.4961 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.3940 stainless steel and the bottom bar is EN 1.4961 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
39
Fatigue Strength, MPa 190
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 540
610
Tensile Strength: Yield (Proof), MPa 240
220

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 410
510
Maximum Temperature: Mechanical, °C 930
890
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1380
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 17
21
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.3
4.0
Embodied Energy, MJ/kg 47
57
Embodied Water, L/kg 150
140

Common Calculations

PREN (Pitting Resistance) 20
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
190
Resilience: Unit (Modulus of Resilience), kJ/m3 150
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
22
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 4.1
4.3
Thermal Shock Resistance, points 16
14

Alloy Composition

Carbon (C), % 0 to 0.030
0.040 to 0.1
Chromium (Cr), % 16.5 to 18.5
15 to 17
Iron (Fe), % 64.2 to 71.4
65.6 to 72.3
Manganese (Mn), % 0 to 2.0
0 to 1.5
Nickel (Ni), % 12 to 14
12 to 14
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 1.0
0.3 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.015