MakeItFrom.com
Menu (ESC)

EN 1.3955 Stainless Steel vs. AISI 301LN Stainless Steel

Both EN 1.3955 stainless steel and AISI 301LN stainless steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.3955 stainless steel and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
23 to 51
Fatigue Strength, MPa 150
270 to 520
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 520
630 to 1060
Tensile Strength: Yield (Proof), MPa 220
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 410
410
Maximum Temperature: Mechanical, °C 930
890
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 16
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 45
39
Embodied Water, L/kg 140
130

Common Calculations

PREN (Pitting Resistance) 19
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 130
180 to 1520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
22 to 38
Strength to Weight: Bending, points 18
21 to 30
Thermal Diffusivity, mm2/s 4.1
4.0
Thermal Shock Resistance, points 15
14 to 24

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 16.5 to 18.5
16 to 18
Iron (Fe), % 65.5 to 73.5
70.7 to 77.9
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 10 to 12
6.0 to 8.0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030