MakeItFrom.com
Menu (ESC)

EN 1.3956 Stainless Steel vs. 201.0 Aluminum

EN 1.3956 stainless steel belongs to the iron alloys classification, while 201.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3956 stainless steel and the bottom bar is 201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 27
4.4 to 20
Fatigue Strength, MPa 240
120 to 150
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 650
370 to 470
Tensile Strength: Yield (Proof), MPa 330
220 to 400

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1080
170
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1380
570
Specific Heat Capacity, J/kg-K 480
870
Thermal Expansion, µm/m-K 13
19

Otherwise Unclassified Properties

Base Metal Price, % relative 22
38
Density, g/cm3 7.8
3.1
Embodied Carbon, kg CO2/kg material 4.8
8.7
Embodied Energy, MJ/kg 68
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
19 to 63
Resilience: Unit (Modulus of Resilience), kJ/m3 270
330 to 1160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 23
33 to 42
Strength to Weight: Bending, points 21
37 to 44
Thermal Shock Resistance, points 18
19 to 25

Alloy Composition

Aluminum (Al), % 0
92.1 to 95.1
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20.5 to 23.5
0
Copper (Cu), % 0
4.0 to 5.2
Iron (Fe), % 51.9 to 62.1
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.55
Manganese (Mn), % 4.0 to 6.0
0.2 to 0.5
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Silver (Ag), % 0
0.4 to 1.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.15 to 0.35
Vanadium (V), % 0.1 to 0.3
0
Residuals, % 0
0 to 0.1