MakeItFrom.com
Menu (ESC)

EN 1.3956 Stainless Steel vs. 5652 Aluminum

EN 1.3956 stainless steel belongs to the iron alloys classification, while 5652 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3956 stainless steel and the bottom bar is 5652 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 27
6.8 to 25
Fatigue Strength, MPa 240
60 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 650
190 to 290
Tensile Strength: Yield (Proof), MPa 330
74 to 260

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1080
190
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.8
8.6
Embodied Energy, MJ/kg 68
150
Embodied Water, L/kg 180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
12 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 270
40 to 480
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 23
20 to 30
Strength to Weight: Bending, points 21
27 to 36
Thermal Shock Resistance, points 18
8.4 to 13

Alloy Composition

Aluminum (Al), % 0
95.8 to 97.7
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20.5 to 23.5
0.15 to 0.35
Copper (Cu), % 0
0 to 0.040
Iron (Fe), % 51.9 to 62.1
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 4.0 to 6.0
0 to 0.010
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15