MakeItFrom.com
Menu (ESC)

EN 1.3956 Stainless Steel vs. 6082 Aluminum

EN 1.3956 stainless steel belongs to the iron alloys classification, while 6082 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3956 stainless steel and the bottom bar is 6082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 27
6.3 to 18
Fatigue Strength, MPa 240
55 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 650
140 to 340
Tensile Strength: Yield (Proof), MPa 330
85 to 320

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1080
170
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1380
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 4.8
8.3
Embodied Energy, MJ/kg 68
150
Embodied Water, L/kg 180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
19 to 43
Resilience: Unit (Modulus of Resilience), kJ/m3 270
52 to 710
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 23
14 to 35
Strength to Weight: Bending, points 21
21 to 40
Thermal Shock Resistance, points 18
6.0 to 15

Alloy Composition

Aluminum (Al), % 0
95.2 to 98.3
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20.5 to 23.5
0 to 0.25
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 51.9 to 62.1
0 to 0.5
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 4.0 to 6.0
0.4 to 1.0
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.7 to 1.3
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15