MakeItFrom.com
Menu (ESC)

EN 1.3956 Stainless Steel vs. SAE-AISI 1026 Steel

Both EN 1.3956 stainless steel and SAE-AISI 1026 steel are iron alloys. They have 58% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.3956 stainless steel and the bottom bar is SAE-AISI 1026 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 27
17 to 27
Fatigue Strength, MPa 240
200 to 310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 650
500 to 550
Tensile Strength: Yield (Proof), MPa 330
270 to 470

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1080
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 22
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 4.8
1.4
Embodied Energy, MJ/kg 68
18
Embodied Water, L/kg 180
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 270
200 to 580
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 23
18 to 20
Strength to Weight: Bending, points 21
18 to 19
Thermal Shock Resistance, points 18
16 to 18

Alloy Composition

Carbon (C), % 0 to 0.060
0.22 to 0.28
Chromium (Cr), % 20.5 to 23.5
0
Iron (Fe), % 51.9 to 62.1
98.7 to 99.18
Manganese (Mn), % 4.0 to 6.0
0.6 to 0.9
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.050
Vanadium (V), % 0.1 to 0.3
0