MakeItFrom.com
Menu (ESC)

EN 1.3960 Stainless Steel vs. EN 1.1106 Steel

Both EN 1.3960 stainless steel and EN 1.1106 steel are iron alloys. They have 66% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.3960 stainless steel and the bottom bar is EN 1.1106 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
24
Fatigue Strength, MPa 220
270
Impact Strength: V-Notched Charpy, J 90
88
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Tensile Strength: Ultimate (UTS), MPa 590
550
Tensile Strength: Yield (Proof), MPa 270
370

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 970
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
50
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 21
2.3
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.1
1.6
Embodied Energy, MJ/kg 57
22
Embodied Water, L/kg 160
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
360
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
19
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 3.9
14
Thermal Shock Resistance, points 17
17

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.030
0 to 0.18
Chromium (Cr), % 16.5 to 18.5
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 60.2 to 67.9
96.2 to 98.9
Manganese (Mn), % 0 to 2.0
1.1 to 1.7
Molybdenum (Mo), % 2.5 to 3.0
0 to 0.080
Nickel (Ni), % 13 to 15
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.15 to 0.25
0 to 0.012
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.1