MakeItFrom.com
Menu (ESC)

EN 1.3960 Stainless Steel vs. EN 1.4449 Stainless Steel

Both EN 1.3960 stainless steel and EN 1.4449 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have a very high 98% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.3960 stainless steel and the bottom bar is EN 1.4449 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
48
Fatigue Strength, MPa 220
240
Impact Strength: V-Notched Charpy, J 90
91
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
78
Tensile Strength: Ultimate (UTS), MPa 590
620
Tensile Strength: Yield (Proof), MPa 270
250

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 410
410
Maximum Temperature: Mechanical, °C 970
960
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 21
19
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.1
3.9
Embodied Energy, MJ/kg 57
54
Embodied Water, L/kg 160
150

Common Calculations

PREN (Pitting Resistance) 30
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
240
Resilience: Unit (Modulus of Resilience), kJ/m3 190
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 3.9
4.0
Thermal Shock Resistance, points 17
14

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.035
Chromium (Cr), % 16.5 to 18.5
17 to 18.2
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 60.2 to 67.9
62.4 to 69.3
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.5 to 3.0
2.3 to 2.8
Nickel (Ni), % 13 to 15
11.5 to 12.5
Nitrogen (N), % 0.15 to 0.25
0 to 0.080
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015