MakeItFrom.com
Menu (ESC)

EN 1.3960 Stainless Steel vs. EN 1.4507 Stainless Steel

Both EN 1.3960 stainless steel and EN 1.4507 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.3960 stainless steel and the bottom bar is EN 1.4507 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
25
Fatigue Strength, MPa 220
410
Impact Strength: V-Notched Charpy, J 90
90
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
80
Tensile Strength: Ultimate (UTS), MPa 590
840
Tensile Strength: Yield (Proof), MPa 270
590

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 410
450
Maximum Temperature: Mechanical, °C 970
1100
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 21
21
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.1
4.0
Embodied Energy, MJ/kg 57
55
Embodied Water, L/kg 160
180

Common Calculations

PREN (Pitting Resistance) 30
41
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
190
Resilience: Unit (Modulus of Resilience), kJ/m3 190
850
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
30
Strength to Weight: Bending, points 20
25
Thermal Diffusivity, mm2/s 3.9
4.0
Thermal Shock Resistance, points 17
23

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 16.5 to 18.5
24 to 26
Copper (Cu), % 0
1.0 to 2.5
Iron (Fe), % 60.2 to 67.9
56.4 to 65.8
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.5 to 3.0
3.0 to 4.0
Nickel (Ni), % 13 to 15
6.0 to 8.0
Nitrogen (N), % 0.15 to 0.25
0.2 to 0.3
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.020
0 to 0.015