MakeItFrom.com
Menu (ESC)

EN 1.3960 Stainless Steel vs. EN AC-47100 Aluminum

EN 1.3960 stainless steel belongs to the iron alloys classification, while EN AC-47100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3960 stainless steel and the bottom bar is EN AC-47100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 34
1.1
Fatigue Strength, MPa 220
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Tensile Strength: Ultimate (UTS), MPa 590
270
Tensile Strength: Yield (Proof), MPa 270
160

Thermal Properties

Latent Heat of Fusion, J/g 290
570
Maximum Temperature: Mechanical, °C 970
170
Melting Completion (Liquidus), °C 1440
590
Melting Onset (Solidus), °C 1400
560
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 21
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 4.1
7.6
Embodied Energy, MJ/kg 57
140
Embodied Water, L/kg 160
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 190
170
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 21
28
Strength to Weight: Bending, points 20
35
Thermal Diffusivity, mm2/s 3.9
54
Thermal Shock Resistance, points 17
12

Alloy Composition

Aluminum (Al), % 0
81.4 to 88.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16.5 to 18.5
0 to 0.1
Copper (Cu), % 0
0.7 to 1.2
Iron (Fe), % 60.2 to 67.9
0 to 1.3
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0 to 2.0
0 to 0.55
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 13 to 15
0 to 0.3
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
10.5 to 13.5
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.55
Residuals, % 0
0 to 0.25