MakeItFrom.com
Menu (ESC)

EN 1.3960 Stainless Steel vs. CC330G Bronze

EN 1.3960 stainless steel belongs to the iron alloys classification, while CC330G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.3960 stainless steel and the bottom bar is CC330G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 590
530
Tensile Strength: Yield (Proof), MPa 270
190

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 970
220
Melting Completion (Liquidus), °C 1440
1050
Melting Onset (Solidus), °C 1400
1000
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 15
62
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
15

Otherwise Unclassified Properties

Base Metal Price, % relative 21
29
Density, g/cm3 7.9
8.4
Embodied Carbon, kg CO2/kg material 4.1
3.2
Embodied Energy, MJ/kg 57
52
Embodied Water, L/kg 160
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
82
Resilience: Unit (Modulus of Resilience), kJ/m3 190
170
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 3.9
17
Thermal Shock Resistance, points 17
19

Alloy Composition

Aluminum (Al), % 0
8.0 to 10.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 0
87 to 92
Iron (Fe), % 60.2 to 67.9
0 to 1.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 13 to 15
0 to 1.0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
0 to 0.5