MakeItFrom.com
Menu (ESC)

EN 1.3960 Stainless Steel vs. S17400 Stainless Steel

Both EN 1.3960 stainless steel and S17400 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.3960 stainless steel and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
11 to 21
Fatigue Strength, MPa 220
380 to 670
Impact Strength: V-Notched Charpy, J 90
7.6 to 86
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
75
Tensile Strength: Ultimate (UTS), MPa 590
910 to 1390
Tensile Strength: Yield (Proof), MPa 270
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 410
450
Maximum Temperature: Mechanical, °C 970
850
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
17
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 21
14
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.1
2.7
Embodied Energy, MJ/kg 57
39
Embodied Water, L/kg 160
130

Common Calculations

PREN (Pitting Resistance) 30
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 190
880 to 4060
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
32 to 49
Strength to Weight: Bending, points 20
27 to 35
Thermal Diffusivity, mm2/s 3.9
4.5
Thermal Shock Resistance, points 17
30 to 46

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.070
Chromium (Cr), % 16.5 to 18.5
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 60.2 to 67.9
70.4 to 78.9
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 13 to 15
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030