MakeItFrom.com
Menu (ESC)

EN 1.3960 Stainless Steel vs. S44537 Stainless Steel

Both EN 1.3960 stainless steel and S44537 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.3960 stainless steel and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
21
Fatigue Strength, MPa 220
230
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
79
Tensile Strength: Ultimate (UTS), MPa 590
510
Tensile Strength: Yield (Proof), MPa 270
360

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 410
530
Maximum Temperature: Mechanical, °C 970
1000
Melting Completion (Liquidus), °C 1440
1480
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 21
19
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.1
3.4
Embodied Energy, MJ/kg 57
50
Embodied Water, L/kg 160
140

Common Calculations

PREN (Pitting Resistance) 30
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
95
Resilience: Unit (Modulus of Resilience), kJ/m3 190
320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 3.9
5.6
Thermal Shock Resistance, points 17
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 16.5 to 18.5
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 60.2 to 67.9
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 2.0
0 to 0.8
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 13 to 15
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0.15 to 0.25
0 to 0.040
Phosphorus (P), % 0 to 0.035
0 to 0.050
Silicon (Si), % 0 to 1.0
0.1 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0