MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. 2018 Aluminum

EN 1.3961 alloy belongs to the iron alloys classification, while 2018 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is 2018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 31
9.6
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
27
Shear Strength, MPa 300
270
Tensile Strength: Ultimate (UTS), MPa 450
420
Tensile Strength: Yield (Proof), MPa 310
310

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1390
510
Specific Heat Capacity, J/kg-K 460
870
Thermal Expansion, µm/m-K 1.3
22

Otherwise Unclassified Properties

Base Metal Price, % relative 25
11
Density, g/cm3 8.2
3.1
Embodied Carbon, kg CO2/kg material 4.8
8.1
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 110
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
37
Resilience: Unit (Modulus of Resilience), kJ/m3 250
670
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
45
Strength to Weight: Axial, points 15
38
Strength to Weight: Bending, points 16
41
Thermal Shock Resistance, points 130
19

Alloy Composition

Aluminum (Al), % 0
89.7 to 94.4
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Iron (Fe), % 60.7 to 65
0 to 1.0
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0 to 0.5
0 to 0.2
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
1.7 to 2.3
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.9
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15