MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. 357.0 Aluminum

EN 1.3961 alloy belongs to the iron alloys classification, while 357.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is 357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 31
3.4
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
26
Shear Strength, MPa 300
200
Tensile Strength: Ultimate (UTS), MPa 450
350
Tensile Strength: Yield (Proof), MPa 310
300

Thermal Properties

Latent Heat of Fusion, J/g 270
500
Melting Completion (Liquidus), °C 1430
620
Melting Onset (Solidus), °C 1390
560
Specific Heat Capacity, J/kg-K 460
910
Thermal Expansion, µm/m-K 1.3
21

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 8.2
2.6
Embodied Carbon, kg CO2/kg material 4.8
8.0
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 110
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
11
Resilience: Unit (Modulus of Resilience), kJ/m3 250
620
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 15
38
Strength to Weight: Bending, points 16
43
Thermal Shock Resistance, points 130
17

Alloy Composition

Aluminum (Al), % 0
91.3 to 93.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 60.7 to 65
0 to 0.15
Magnesium (Mg), % 0
0.45 to 0.6
Manganese (Mn), % 0 to 0.5
0 to 0.030
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
6.5 to 7.5
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15