MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. 380.0 Aluminum

EN 1.3961 alloy belongs to the iron alloys classification, while 380.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
74
Elongation at Break, % 31
3.0
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
28
Shear Strength, MPa 300
190
Tensile Strength: Ultimate (UTS), MPa 450
320
Tensile Strength: Yield (Proof), MPa 310
160

Thermal Properties

Latent Heat of Fusion, J/g 270
510
Melting Completion (Liquidus), °C 1430
590
Melting Onset (Solidus), °C 1390
540
Specific Heat Capacity, J/kg-K 460
870
Thermal Expansion, µm/m-K 1.3
22

Otherwise Unclassified Properties

Base Metal Price, % relative 25
10
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 4.8
7.5
Embodied Energy, MJ/kg 66
140
Embodied Water, L/kg 110
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 250
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
48
Strength to Weight: Axial, points 15
31
Strength to Weight: Bending, points 16
36
Thermal Shock Resistance, points 130
14

Alloy Composition

Aluminum (Al), % 0
79.6 to 89.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 60.7 to 65
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.5
0 to 0.5
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0 to 0.5
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
7.5 to 9.5
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5