MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. 6018 Aluminum

EN 1.3961 alloy belongs to the iron alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 31
9.0 to 9.1
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
26
Shear Strength, MPa 300
170 to 180
Tensile Strength: Ultimate (UTS), MPa 450
290 to 300
Tensile Strength: Yield (Proof), MPa 310
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1390
570
Specific Heat Capacity, J/kg-K 460
890
Thermal Expansion, µm/m-K 1.3
23

Otherwise Unclassified Properties

Base Metal Price, % relative 25
10
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 4.8
8.2
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 110
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 250
360 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
48
Strength to Weight: Axial, points 15
28 to 29
Strength to Weight: Bending, points 16
34 to 35
Thermal Shock Resistance, points 130
13

Alloy Composition

Aluminum (Al), % 0
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0 to 0.1
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 60.7 to 65
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 0.5
0.3 to 0.8
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.5 to 1.2
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15