MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. 6060 Aluminum

EN 1.3961 alloy belongs to the iron alloys classification, while 6060 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is 6060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 31
9.0 to 16
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
26
Shear Strength, MPa 300
86 to 130
Tensile Strength: Ultimate (UTS), MPa 450
140 to 220
Tensile Strength: Yield (Proof), MPa 310
71 to 170

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Melting Completion (Liquidus), °C 1430
660
Melting Onset (Solidus), °C 1390
610
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 1.3
23

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 4.8
8.3
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 110
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
13 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 250
37 to 210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 15
14 to 23
Strength to Weight: Bending, points 16
22 to 30
Thermal Shock Resistance, points 130
6.3 to 9.9

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.3
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0 to 0.050
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 60.7 to 65
0.1 to 0.3
Magnesium (Mg), % 0
0.35 to 0.6
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.3 to 0.6
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15