MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. 6182 Aluminum

EN 1.3961 alloy belongs to the iron alloys classification, while 6182 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 31
6.8 to 13
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
26
Shear Strength, MPa 300
140 to 190
Tensile Strength: Ultimate (UTS), MPa 450
230 to 320
Tensile Strength: Yield (Proof), MPa 310
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1390
600
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 1.3
23

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 4.8
8.4
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 110
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 250
110 to 520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 15
23 to 32
Strength to Weight: Bending, points 16
30 to 38
Thermal Shock Resistance, points 130
10 to 14

Alloy Composition

Aluminum (Al), % 0
95 to 97.9
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0 to 0.25
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 60.7 to 65
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 0 to 0.5
0.5 to 1.0
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.9 to 1.3
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15