MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. 6262A Aluminum

EN 1.3961 alloy belongs to the iron alloys classification, while 6262A aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is 6262A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 31
4.5 to 11
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
26
Shear Strength, MPa 300
190 to 240
Tensile Strength: Ultimate (UTS), MPa 450
310 to 410
Tensile Strength: Yield (Proof), MPa 310
270 to 370

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1390
580
Specific Heat Capacity, J/kg-K 460
890
Thermal Expansion, µm/m-K 1.3
23

Otherwise Unclassified Properties

Base Metal Price, % relative 25
11
Density, g/cm3 8.2
2.8
Embodied Carbon, kg CO2/kg material 4.8
8.4
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 110
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 250
540 to 1000
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 15
31 to 41
Strength to Weight: Bending, points 16
36 to 44
Thermal Shock Resistance, points 130
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.2 to 97.8
Bismuth (Bi), % 0
0.4 to 0.9
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0.040 to 0.14
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 60.7 to 65
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 0.5
0 to 0.15
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.4 to 0.8
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.4 to 1.0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15