MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. 7175 Aluminum

EN 1.3961 alloy belongs to the iron alloys classification, while 7175 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is 7175 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 31
3.8 to 5.9
Poisson's Ratio 0.3
0.32
Shear Modulus, GPa 72
26
Shear Strength, MPa 300
290 to 330
Tensile Strength: Ultimate (UTS), MPa 450
520 to 570
Tensile Strength: Yield (Proof), MPa 310
430 to 490

Thermal Properties

Latent Heat of Fusion, J/g 270
380
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1390
480
Specific Heat Capacity, J/kg-K 460
870
Thermal Expansion, µm/m-K 1.3
23

Otherwise Unclassified Properties

Base Metal Price, % relative 25
10
Density, g/cm3 8.2
3.0
Embodied Carbon, kg CO2/kg material 4.8
8.2
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 110
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
18 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1310 to 1730
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 15
48 to 52
Strength to Weight: Bending, points 16
48 to 51
Thermal Shock Resistance, points 130
23 to 25

Alloy Composition

Aluminum (Al), % 0
88 to 91.4
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0.18 to 0.28
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 60.7 to 65
0 to 0.2
Magnesium (Mg), % 0
2.1 to 2.9
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
5.1 to 6.1
Residuals, % 0
0 to 0.15