MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. 7204 Aluminum

EN 1.3961 alloy belongs to the iron alloys classification, while 7204 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is 7204 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 31
11 to 13
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
26
Shear Strength, MPa 300
130 to 220
Tensile Strength: Ultimate (UTS), MPa 450
220 to 380
Tensile Strength: Yield (Proof), MPa 310
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 270
380
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1390
520
Specific Heat Capacity, J/kg-K 460
880
Thermal Expansion, µm/m-K 1.3
24

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 4.8
8.4
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 110
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
25 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 250
110 to 710
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 15
21 to 36
Strength to Weight: Bending, points 16
28 to 40
Thermal Shock Resistance, points 130
9.4 to 16

Alloy Composition

Aluminum (Al), % 0
90.5 to 94.8
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0 to 0.3
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 60.7 to 65
0 to 0.35
Magnesium (Mg), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 0.5
0.2 to 0.7
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15