MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. AWS E310

Both EN 1.3961 alloy and AWS E310 are iron alloys. They have 72% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is AWS E310.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 31
34
Poisson's Ratio 0.3
0.27
Shear Modulus, GPa 72
79
Tensile Strength: Ultimate (UTS), MPa 450
620

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Melting Completion (Liquidus), °C 1430
1400
Melting Onset (Solidus), °C 1390
1360
Specific Heat Capacity, J/kg-K 460
480
Thermal Expansion, µm/m-K 1.3
14

Otherwise Unclassified Properties

Base Metal Price, % relative 25
26
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 4.8
4.6
Embodied Energy, MJ/kg 66
65
Embodied Water, L/kg 110
200

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 15
22
Strength to Weight: Bending, points 16
20
Thermal Shock Resistance, points 130
15

Alloy Composition

Carbon (C), % 0 to 0.050
0.080 to 0.2
Chromium (Cr), % 0 to 0.25
25 to 28
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 60.7 to 65
44.5 to 53.9
Manganese (Mn), % 0 to 0.5
1.0 to 2.5
Molybdenum (Mo), % 0 to 1.0
0 to 0.75
Nickel (Ni), % 35 to 37
20 to 22.5
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.030