EN 1.3961 Alloy vs. EN 1.8879 Steel
Both EN 1.3961 alloy and EN 1.8879 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have 65% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.
For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is EN 1.8879 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 31 | |
16 |
Poisson's Ratio | 0.3 | |
0.29 |
Shear Modulus, GPa | 72 | |
73 |
Shear Strength, MPa | 300 | |
510 |
Tensile Strength: Ultimate (UTS), MPa | 450 | |
830 |
Tensile Strength: Yield (Proof), MPa | 310 | |
710 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
260 |
Melting Completion (Liquidus), °C | 1430 | |
1460 |
Melting Onset (Solidus), °C | 1390 | |
1420 |
Specific Heat Capacity, J/kg-K | 460 | |
470 |
Thermal Expansion, µm/m-K | 1.3 | |
13 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 25 | |
3.7 |
Density, g/cm3 | 8.2 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 4.8 | |
1.9 |
Embodied Energy, MJ/kg | 66 | |
26 |
Embodied Water, L/kg | 110 | |
54 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 130 | |
120 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 250 | |
1320 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 23 | |
24 |
Strength to Weight: Axial, points | 15 | |
29 |
Strength to Weight: Bending, points | 16 | |
25 |
Thermal Shock Resistance, points | 130 | |
24 |
Alloy Composition
Boron (B), % | 0 | |
0 to 0.0050 |
Carbon (C), % | 0 to 0.050 | |
0 to 0.2 |
Chromium (Cr), % | 0 to 0.25 | |
0 to 1.5 |
Copper (Cu), % | 0 | |
0 to 0.3 |
Iron (Fe), % | 60.7 to 65 | |
91.9 to 100 |
Manganese (Mn), % | 0 to 0.5 | |
0 to 1.7 |
Molybdenum (Mo), % | 0 to 1.0 | |
0 to 0.7 |
Nickel (Ni), % | 35 to 37 | |
0 to 2.5 |
Niobium (Nb), % | 0 | |
0 to 0.060 |
Nitrogen (N), % | 0 | |
0 to 0.015 |
Phosphorus (P), % | 0 to 0.030 | |
0 to 0.025 |
Silicon (Si), % | 0 to 0.5 | |
0 to 0.8 |
Sulfur (S), % | 0 to 0.020 | |
0 to 0.010 |
Titanium (Ti), % | 0 | |
0 to 0.050 |
Vanadium (V), % | 0 | |
0 to 0.12 |
Zirconium (Zr), % | 0 | |
0 to 0.15 |