MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. EN AC-43300 Aluminum

EN 1.3961 alloy belongs to the iron alloys classification, while EN AC-43300 aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 31
3.4 to 6.7
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
27
Tensile Strength: Ultimate (UTS), MPa 450
280 to 290
Tensile Strength: Yield (Proof), MPa 310
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 270
540
Melting Completion (Liquidus), °C 1430
600
Melting Onset (Solidus), °C 1390
590
Specific Heat Capacity, J/kg-K 460
910
Thermal Expansion, µm/m-K 1.3
22

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 8.2
2.5
Embodied Carbon, kg CO2/kg material 4.8
7.9
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 110
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
9.1 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 250
300 to 370
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 15
31 to 32
Strength to Weight: Bending, points 16
37 to 38
Thermal Shock Resistance, points 130
13 to 14

Alloy Composition

Aluminum (Al), % 0
88.9 to 90.8
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 60.7 to 65
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
9.0 to 10
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1