MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. EN AC-44200 Aluminum

EN 1.3961 alloy belongs to the iron alloys classification, while EN AC-44200 aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is EN AC-44200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 31
6.2
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
27
Tensile Strength: Ultimate (UTS), MPa 450
180
Tensile Strength: Yield (Proof), MPa 310
86

Thermal Properties

Latent Heat of Fusion, J/g 270
570
Melting Completion (Liquidus), °C 1430
590
Melting Onset (Solidus), °C 1390
580
Specific Heat Capacity, J/kg-K 460
910
Thermal Expansion, µm/m-K 1.3
21

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 8.2
2.5
Embodied Carbon, kg CO2/kg material 4.8
7.7
Embodied Energy, MJ/kg 66
140
Embodied Water, L/kg 110
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
9.1
Resilience: Unit (Modulus of Resilience), kJ/m3 250
51
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 23
55
Strength to Weight: Axial, points 15
20
Strength to Weight: Bending, points 16
28
Thermal Shock Resistance, points 130
8.4

Alloy Composition

Aluminum (Al), % 0
85.2 to 89.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 60.7 to 65
0 to 0.55
Manganese (Mn), % 0 to 0.5
0 to 0.35
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
10.5 to 13.5
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15