MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. EN AC-45300 Aluminum

EN 1.3961 alloy belongs to the iron alloys classification, while EN AC-45300 aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 31
1.0 to 2.8
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
27
Tensile Strength: Ultimate (UTS), MPa 450
220 to 290
Tensile Strength: Yield (Proof), MPa 310
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 270
470
Melting Completion (Liquidus), °C 1430
630
Melting Onset (Solidus), °C 1390
590
Specific Heat Capacity, J/kg-K 460
890
Thermal Expansion, µm/m-K 1.3
22

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 4.8
8.0
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 110
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 250
160 to 390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 15
23 to 29
Strength to Weight: Bending, points 16
30 to 35
Thermal Shock Resistance, points 130
10 to 13

Alloy Composition

Aluminum (Al), % 0
90.2 to 94.2
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0
1.0 to 1.5
Iron (Fe), % 60.7 to 65
0 to 0.65
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.35 to 0.65
Manganese (Mn), % 0 to 0.5
0 to 0.55
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
4.5 to 5.5
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15