MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. SAE-AISI 1065 Steel

Both EN 1.3961 alloy and SAE-AISI 1065 steel are iron alloys. They have 63% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is SAE-AISI 1065 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 31
11 to 14
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 72
72
Shear Strength, MPa 300
430 to 470
Tensile Strength: Ultimate (UTS), MPa 450
710 to 780
Tensile Strength: Yield (Proof), MPa 310
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 1.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 25
1.8
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 4.8
1.4
Embodied Energy, MJ/kg 66
19
Embodied Water, L/kg 110
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
74 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 250
490 to 820
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 15
25 to 28
Strength to Weight: Bending, points 16
23 to 24
Thermal Shock Resistance, points 130
25 to 27

Alloy Composition

Carbon (C), % 0 to 0.050
0.6 to 0.7
Chromium (Cr), % 0 to 0.25
0
Iron (Fe), % 60.7 to 65
98.3 to 98.8
Manganese (Mn), % 0 to 0.5
0.6 to 0.9
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0 to 0.050