MakeItFrom.com
Menu (ESC)

EN 1.3961 Alloy vs. C52100 Bronze

EN 1.3961 alloy belongs to the iron alloys classification, while C52100 bronze belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is EN 1.3961 alloy and the bottom bar is C52100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 72
41
Tensile Strength: Ultimate (UTS), MPa 450
380 to 800

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Melting Completion (Liquidus), °C 1430
1030
Melting Onset (Solidus), °C 1390
880
Specific Heat Capacity, J/kg-K 460
370
Thermal Expansion, µm/m-K 1.3
18

Otherwise Unclassified Properties

Base Metal Price, % relative 25
34
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 4.8
3.4
Embodied Energy, MJ/kg 66
55
Embodied Water, L/kg 110
370

Common Calculations

Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 15
12 to 25
Strength to Weight: Bending, points 16
13 to 22
Thermal Shock Resistance, points 130
14 to 28

Alloy Composition

Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0
89.8 to 93
Iron (Fe), % 60.7 to 65
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0.030 to 0.35
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
7.0 to 9.0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5