MakeItFrom.com
Menu (ESC)

EN 1.3963 Alloy vs. 356.0 Aluminum

EN 1.3963 alloy belongs to the iron alloys classification, while 356.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3963 alloy and the bottom bar is 356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 29
2.0 to 3.8
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
27
Shear Strength, MPa 290
140 to 190
Tensile Strength: Ultimate (UTS), MPa 440
160 to 240
Tensile Strength: Yield (Proof), MPa 310
100 to 190

Thermal Properties

Latent Heat of Fusion, J/g 270
500
Melting Completion (Liquidus), °C 1430
620
Melting Onset (Solidus), °C 1390
570
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 1.6
21

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 8.2
2.6
Embodied Carbon, kg CO2/kg material 4.8
8.0
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 110
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
3.2 to 8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 260
70 to 250
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 15
17 to 26
Strength to Weight: Bending, points 16
25 to 33
Thermal Shock Resistance, points 110
7.6 to 11

Alloy Composition

Aluminum (Al), % 0
90.1 to 93.3
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 60.5 to 64.9
0 to 0.6
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 0.5
0 to 0.35
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
6.5 to 7.5
Sulfur (S), % 0.1 to 0.2
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15