MakeItFrom.com
Menu (ESC)

EN 1.3963 Alloy vs. 4006 Aluminum

EN 1.3963 alloy belongs to the iron alloys classification, while 4006 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3963 alloy and the bottom bar is 4006 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 29
3.4 to 24
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
26
Shear Strength, MPa 290
70 to 91
Tensile Strength: Ultimate (UTS), MPa 440
110 to 160
Tensile Strength: Yield (Proof), MPa 310
62 to 140

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1390
620
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 1.6
23

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.0
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 4.8
8.1
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 110
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
5.1 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 260
28 to 130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 15
11 to 16
Strength to Weight: Bending, points 16
19 to 24
Thermal Shock Resistance, points 110
4.9 to 7.0

Alloy Composition

Aluminum (Al), % 0
97.4 to 98.7
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 60.5 to 64.9
0.5 to 0.8
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 0.5
0 to 0.050
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.8 to 1.2
Sulfur (S), % 0.1 to 0.2
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15