MakeItFrom.com
Menu (ESC)

EN 1.3963 Alloy vs. 5252 Aluminum

EN 1.3963 alloy belongs to the iron alloys classification, while 5252 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3963 alloy and the bottom bar is 5252 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 29
4.5 to 11
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
25
Shear Strength, MPa 290
140 to 160
Tensile Strength: Ultimate (UTS), MPa 440
230 to 290
Tensile Strength: Yield (Proof), MPa 310
170 to 240

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1390
610
Specific Heat Capacity, J/kg-K 460
910
Thermal Expansion, µm/m-K 1.6
24

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 4.8
8.7
Embodied Energy, MJ/kg 66
160
Embodied Water, L/kg 110
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 260
210 to 430
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 15
23 to 30
Strength to Weight: Bending, points 16
31 to 36
Thermal Shock Resistance, points 110
10 to 13

Alloy Composition

Aluminum (Al), % 0
96.6 to 97.8
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 60.5 to 64.9
0 to 0.1
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.080
Sulfur (S), % 0.1 to 0.2
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1