MakeItFrom.com
Menu (ESC)

EN 1.3963 Alloy vs. 7049A Aluminum

EN 1.3963 alloy belongs to the iron alloys classification, while 7049A aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3963 alloy and the bottom bar is 7049A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 29
5.0 to 5.7
Poisson's Ratio 0.3
0.32
Shear Modulus, GPa 72
27
Shear Strength, MPa 290
340 to 350
Tensile Strength: Ultimate (UTS), MPa 440
580 to 590
Tensile Strength: Yield (Proof), MPa 310
500 to 530

Thermal Properties

Latent Heat of Fusion, J/g 270
370
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1390
430
Specific Heat Capacity, J/kg-K 460
850
Thermal Expansion, µm/m-K 1.6
24

Otherwise Unclassified Properties

Base Metal Price, % relative 25
10
Density, g/cm3 8.2
3.1
Embodied Carbon, kg CO2/kg material 4.8
8.2
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 110
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
28 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 260
1800 to 1990
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
44
Strength to Weight: Axial, points 15
52 to 53
Strength to Weight: Bending, points 16
50 to 51
Thermal Shock Resistance, points 110
25

Alloy Composition

Aluminum (Al), % 0
84.6 to 89.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0.050 to 0.25
Copper (Cu), % 0
1.2 to 1.9
Iron (Fe), % 60.5 to 64.9
0 to 0.5
Magnesium (Mg), % 0
2.1 to 3.1
Manganese (Mn), % 0 to 0.5
0 to 0.5
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0.1 to 0.2
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
7.2 to 8.4
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15