MakeItFrom.com
Menu (ESC)

EN 1.3963 Alloy vs. AISI 436 Stainless Steel

Both EN 1.3963 alloy and AISI 436 stainless steel are iron alloys. They have 64% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is EN 1.3963 alloy and the bottom bar is AISI 436 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 29
25
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 72
77
Shear Strength, MPa 290
320
Tensile Strength: Ultimate (UTS), MPa 440
500
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 460
480
Thermal Expansion, µm/m-K 1.6
10

Otherwise Unclassified Properties

Base Metal Price, % relative 25
12
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 4.8
2.7
Embodied Energy, MJ/kg 66
38
Embodied Water, L/kg 110
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 15
18
Strength to Weight: Bending, points 16
18
Thermal Shock Resistance, points 110
18

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.12
Chromium (Cr), % 0 to 0.25
16 to 18
Iron (Fe), % 60.5 to 64.9
77.8 to 83.3
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0 to 1.0
0.75 to 1.3
Nickel (Ni), % 35 to 37
0
Niobium (Nb), % 0
0 to 0.8
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0.1 to 0.2
0 to 0.030