MakeItFrom.com
Menu (ESC)

EN 1.3963 Alloy vs. EN 1.5410 Steel

Both EN 1.3963 alloy and EN 1.5410 steel are iron alloys. They have 64% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.3963 alloy and the bottom bar is EN 1.5410 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 29
20 to 25
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 440
560 to 620
Tensile Strength: Yield (Proof), MPa 310
400 to 480

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 1.6
13

Otherwise Unclassified Properties

Base Metal Price, % relative 25
2.3
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 4.8
1.7
Embodied Energy, MJ/kg 66
22
Embodied Water, L/kg 110
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 260
430 to 610
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 15
20 to 22
Strength to Weight: Bending, points 16
19 to 21
Thermal Shock Resistance, points 110
16 to 18

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.12
Chromium (Cr), % 0 to 0.25
0
Iron (Fe), % 60.5 to 64.9
96.9 to 98.6
Manganese (Mn), % 0 to 0.5
1.2 to 1.8
Molybdenum (Mo), % 0 to 1.0
0.2 to 0.4
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0.1 to 0.2
0 to 0.020
Vanadium (V), % 0
0.050 to 0.1