MakeItFrom.com
Menu (ESC)

EN 1.3963 Alloy vs. Nickel 30

EN 1.3963 alloy belongs to the iron alloys classification, while nickel 30 belongs to the nickel alloys. They have 52% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.3963 alloy and the bottom bar is nickel 30.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 29
34
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 72
82
Shear Strength, MPa 290
440
Tensile Strength: Ultimate (UTS), MPa 440
660
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 270
320
Melting Completion (Liquidus), °C 1430
1480
Melting Onset (Solidus), °C 1390
1430
Specific Heat Capacity, J/kg-K 460
450
Thermal Expansion, µm/m-K 1.6
13

Otherwise Unclassified Properties

Base Metal Price, % relative 25
60
Density, g/cm3 8.2
8.5
Embodied Carbon, kg CO2/kg material 4.8
9.4
Embodied Energy, MJ/kg 66
130
Embodied Water, L/kg 110
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
180
Resilience: Unit (Modulus of Resilience), kJ/m3 260
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
23
Strength to Weight: Axial, points 15
22
Strength to Weight: Bending, points 16
20
Thermal Shock Resistance, points 110
18

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 0 to 0.25
28 to 31.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0
1.0 to 2.4
Iron (Fe), % 60.5 to 64.9
13 to 17
Manganese (Mn), % 0 to 0.5
0 to 0.030
Molybdenum (Mo), % 0 to 1.0
4.0 to 6.0
Nickel (Ni), % 35 to 37
30.2 to 52.2
Niobium (Nb), % 0
0.3 to 1.5
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.8
Sulfur (S), % 0.1 to 0.2
0 to 0.020
Tungsten (W), % 0
1.5 to 4.0