MakeItFrom.com
Menu (ESC)

EN 1.3963 Alloy vs. SAE-AISI 1060 Steel

Both EN 1.3963 alloy and SAE-AISI 1060 steel are iron alloys. They have 63% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.3963 alloy and the bottom bar is SAE-AISI 1060 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 29
10 to 13
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 72
72
Shear Strength, MPa 290
370 to 450
Tensile Strength: Ultimate (UTS), MPa 440
620 to 740
Tensile Strength: Yield (Proof), MPa 310
400 to 540

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 1.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 25
1.8
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 4.8
1.4
Embodied Energy, MJ/kg 66
19
Embodied Water, L/kg 110
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
58 to 82
Resilience: Unit (Modulus of Resilience), kJ/m3 260
430 to 790
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 15
22 to 26
Strength to Weight: Bending, points 16
21 to 23
Thermal Shock Resistance, points 110
20 to 24

Alloy Composition

Carbon (C), % 0 to 0.050
0.55 to 0.65
Chromium (Cr), % 0 to 0.25
0
Iron (Fe), % 60.5 to 64.9
98.4 to 98.9
Manganese (Mn), % 0 to 0.5
0.6 to 0.9
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0.1 to 0.2
0 to 0.050