MakeItFrom.com
Menu (ESC)

EN 1.3963 Alloy vs. C86500 Bronze

EN 1.3963 alloy belongs to the iron alloys classification, while C86500 bronze belongs to the copper alloys. There are 23 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.3963 alloy and the bottom bar is C86500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 29
25
Poisson's Ratio 0.3
0.3
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 440
530
Tensile Strength: Yield (Proof), MPa 310
190

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Melting Completion (Liquidus), °C 1430
880
Melting Onset (Solidus), °C 1390
860
Specific Heat Capacity, J/kg-K 460
390
Thermal Expansion, µm/m-K 1.6
21

Otherwise Unclassified Properties

Base Metal Price, % relative 25
23
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 4.8
2.8
Embodied Energy, MJ/kg 66
48
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
180
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 15
19
Strength to Weight: Bending, points 16
18
Thermal Shock Resistance, points 110
17

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 60.5 to 64.9
0.4 to 2.0
Lead (Pb), % 0
0 to 0.4
Manganese (Mn), % 0 to 0.5
0.1 to 1.5
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0 to 1.0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0.1 to 0.2
0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
36 to 42
Residuals, % 0
0 to 1.0