MakeItFrom.com
Menu (ESC)

EN 1.3963 Alloy vs. S43940 Stainless Steel

Both EN 1.3963 alloy and S43940 stainless steel are iron alloys. They have 63% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is EN 1.3963 alloy and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 29
21
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 72
77
Shear Strength, MPa 290
310
Tensile Strength: Ultimate (UTS), MPa 440
490
Tensile Strength: Yield (Proof), MPa 310
280

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 460
480
Thermal Expansion, µm/m-K 1.6
10

Otherwise Unclassified Properties

Base Metal Price, % relative 25
12
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 4.8
2.6
Embodied Energy, MJ/kg 66
38
Embodied Water, L/kg 110
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
86
Resilience: Unit (Modulus of Resilience), kJ/m3 260
200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 15
18
Strength to Weight: Bending, points 16
18
Thermal Shock Resistance, points 110
18

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 0 to 0.25
17.5 to 18.5
Iron (Fe), % 60.5 to 64.9
78.2 to 82.1
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 35 to 37
0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0.1 to 0.2
0 to 0.015
Titanium (Ti), % 0
0.1 to 0.6