MakeItFrom.com
Menu (ESC)

EN 1.3963 Alloy vs. S66286 Stainless Steel

Both EN 1.3963 alloy and S66286 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.3963 alloy and the bottom bar is S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 29
17 to 40
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 72
75
Shear Strength, MPa 290
420 to 630
Tensile Strength: Ultimate (UTS), MPa 440
620 to 1020
Tensile Strength: Yield (Proof), MPa 310
280 to 670

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1390
1370
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 1.6
17

Otherwise Unclassified Properties

Base Metal Price, % relative 25
26
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 4.8
6.0
Embodied Energy, MJ/kg 66
87
Embodied Water, L/kg 110
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
150 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 260
190 to 1150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 15
22 to 36
Strength to Weight: Bending, points 16
20 to 28
Thermal Shock Resistance, points 110
13 to 22

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 0 to 0.25
13.5 to 16
Iron (Fe), % 60.5 to 64.9
49.1 to 59.5
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0 to 1.0
1.0 to 1.5
Nickel (Ni), % 35 to 37
24 to 27
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0.1 to 0.2
0 to 0.030
Titanium (Ti), % 0
1.9 to 2.4
Vanadium (V), % 0
0.1 to 0.5