MakeItFrom.com
Menu (ESC)

EN 1.3967 Stainless Steel vs. 7020 Aluminum

EN 1.3967 stainless steel belongs to the iron alloys classification, while 7020 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3967 stainless steel and the bottom bar is 7020 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
45 to 100
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 22
8.4 to 14
Fatigue Strength, MPa 240
110 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 690
190 to 390
Tensile Strength: Yield (Proof), MPa 350
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 1070
210
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 470
880
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 4.8
8.3
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
23 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 310
110 to 690
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 24
18 to 37
Strength to Weight: Bending, points 22
25 to 41
Thermal Shock Resistance, points 15
8.3 to 17

Alloy Composition

Aluminum (Al), % 0
91.2 to 94.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 21.5
0.1 to 0.35
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 50.3 to 57.8
0 to 0.4
Magnesium (Mg), % 0
1.0 to 1.4
Manganese (Mn), % 4.0 to 6.0
0.050 to 0.5
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 15 to 17
0
Niobium (Nb), % 0 to 0.25
0
Nitrogen (N), % 0.2 to 0.35
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.25
Residuals, % 0
0 to 0.15