MakeItFrom.com
Menu (ESC)

EN 1.3967 Stainless Steel vs. A360.0 Aluminum

EN 1.3967 stainless steel belongs to the iron alloys classification, while A360.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3967 stainless steel and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
75
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 22
1.6 to 5.0
Fatigue Strength, MPa 240
82 to 150
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 690
180 to 320
Tensile Strength: Yield (Proof), MPa 350
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 300
530
Maximum Temperature: Mechanical, °C 1070
170
Melting Completion (Liquidus), °C 1430
680
Melting Onset (Solidus), °C 1380
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 4.8
7.8
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 310
190 to 470
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 24
19 to 34
Strength to Weight: Bending, points 22
27 to 39
Thermal Shock Resistance, points 15
8.5 to 15

Alloy Composition

Aluminum (Al), % 0
85.8 to 90.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 21.5
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 50.3 to 57.8
0 to 1.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 4.0 to 6.0
0 to 0.35
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 15 to 17
0 to 0.5
Niobium (Nb), % 0 to 0.25
0
Nitrogen (N), % 0.2 to 0.35
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
9.0 to 10
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25