MakeItFrom.com
Menu (ESC)

EN 1.3967 Stainless Steel vs. EN AC-51400 Aluminum

EN 1.3967 stainless steel belongs to the iron alloys classification, while EN AC-51400 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3967 stainless steel and the bottom bar is EN AC-51400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
71
Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 22
3.4
Fatigue Strength, MPa 240
85
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
25
Tensile Strength: Ultimate (UTS), MPa 690
190
Tensile Strength: Yield (Proof), MPa 350
120

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1070
170
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
600
Specific Heat Capacity, J/kg-K 470
910
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.8
9.1
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 310
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 24
20
Strength to Weight: Bending, points 22
28
Thermal Shock Resistance, points 15
8.6

Alloy Composition

Aluminum (Al), % 0
90.5 to 95.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 21.5
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 50.3 to 57.8
0 to 0.55
Magnesium (Mg), % 0
4.5 to 6.5
Manganese (Mn), % 4.0 to 6.0
0 to 0.45
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 15 to 17
0
Niobium (Nb), % 0 to 0.25
0
Nitrogen (N), % 0.2 to 0.35
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0 to 1.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15