MakeItFrom.com
Menu (ESC)

EN 1.3967 Stainless Steel vs. C82000 Copper

EN 1.3967 stainless steel belongs to the iron alloys classification, while C82000 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is EN 1.3967 stainless steel and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 22
8.0 to 20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
45
Tensile Strength: Ultimate (UTS), MPa 690
350 to 690
Tensile Strength: Yield (Proof), MPa 350
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 1070
220
Melting Completion (Liquidus), °C 1430
1090
Melting Onset (Solidus), °C 1380
970
Specific Heat Capacity, J/kg-K 470
390
Thermal Expansion, µm/m-K 16
17

Otherwise Unclassified Properties

Base Metal Price, % relative 25
60
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 4.8
5.0
Embodied Energy, MJ/kg 66
77
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 310
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
11 to 22
Strength to Weight: Bending, points 22
12 to 20
Thermal Shock Resistance, points 15
12 to 24

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 21.5
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0
95.2 to 97.4
Iron (Fe), % 50.3 to 57.8
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 4.0 to 6.0
0
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 15 to 17
0 to 0.2
Niobium (Nb), % 0 to 0.25
0
Nitrogen (N), % 0.2 to 0.35
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5