MakeItFrom.com
Menu (ESC)

EN 1.3975 Stainless Steel vs. EN AC-47000 Aluminum

EN 1.3975 stainless steel belongs to the iron alloys classification, while EN AC-47000 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.3975 stainless steel and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
60
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 27
1.7
Fatigue Strength, MPa 230
68
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 660
180
Tensile Strength: Yield (Proof), MPa 320
97

Thermal Properties

Latent Heat of Fusion, J/g 340
570
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1360
590
Melting Onset (Solidus), °C 1320
570
Specific Heat Capacity, J/kg-K 500
900
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.5
2.6
Embodied Carbon, kg CO2/kg material 3.3
7.7
Embodied Energy, MJ/kg 47
140
Embodied Water, L/kg 150
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 270
65
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 26
54
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 22
27
Thermal Shock Resistance, points 15
8.3

Alloy Composition

Aluminum (Al), % 0
82.1 to 89.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 16 to 18
0 to 0.1
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 58.2 to 65.4
0 to 0.8
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 7.0 to 9.0
0.050 to 0.55
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 8.0 to 9.0
0 to 0.3
Nitrogen (N), % 0.080 to 0.18
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 3.5 to 4.5
10.5 to 13.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.55
Residuals, % 0
0 to 0.25