MakeItFrom.com
Menu (ESC)

EN 1.4000 Stainless Steel vs. SAE-AISI 8640 Steel

Both EN 1.4000 stainless steel and SAE-AISI 8640 steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4000 stainless steel and the bottom bar is SAE-AISI 8640 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
23
Fatigue Strength, MPa 170
270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 320
360
Tensile Strength: Ultimate (UTS), MPa 500
570
Tensile Strength: Yield (Proof), MPa 260
380

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 760
410
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
39
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
2.6
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.9
1.5
Embodied Energy, MJ/kg 27
20
Embodied Water, L/kg 100
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
120
Resilience: Unit (Modulus of Resilience), kJ/m3 180
380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 8.1
10
Thermal Shock Resistance, points 18
17

Alloy Composition

Carbon (C), % 0 to 0.080
0.38 to 0.43
Chromium (Cr), % 12 to 14
0.4 to 0.6
Iron (Fe), % 83.9 to 88
96.6 to 97.8
Manganese (Mn), % 0 to 1.0
0.75 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0
0.4 to 0.7
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.040