MakeItFrom.com
Menu (ESC)

EN 1.4000 Stainless Steel vs. S35115 Stainless Steel

Both EN 1.4000 stainless steel and S35115 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 66% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4000 stainless steel and the bottom bar is S35115 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
210
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
46
Fatigue Strength, MPa 170
280
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
79
Shear Strength, MPa 320
470
Tensile Strength: Ultimate (UTS), MPa 500
670
Tensile Strength: Yield (Proof), MPa 260
310

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 390
440
Maximum Temperature: Mechanical, °C 760
1100
Melting Completion (Liquidus), °C 1440
1420
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
26
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 1.9
4.8
Embodied Energy, MJ/kg 27
67
Embodied Water, L/kg 100
190

Common Calculations

PREN (Pitting Resistance) 13
35
Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
250
Resilience: Unit (Modulus of Resilience), kJ/m3 180
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 8.1
3.9
Thermal Shock Resistance, points 18
15

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 12 to 14
23 to 25
Iron (Fe), % 83.9 to 88
47.6 to 55.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0
19 to 22
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0.5 to 1.5
Sulfur (S), % 0 to 0.015
0 to 0.015