MakeItFrom.com
Menu (ESC)

EN 1.4005 Stainless Steel vs. 296.0 Aluminum

EN 1.4005 stainless steel belongs to the iron alloys classification, while 296.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4005 stainless steel and the bottom bar is 296.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 13 to 21
3.2 to 7.1
Fatigue Strength, MPa 240 to 290
47 to 70
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 630 to 750
260 to 270
Tensile Strength: Yield (Proof), MPa 370 to 500
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 270
420
Maximum Temperature: Mechanical, °C 760
170
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1400
540
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 30
130 to 150
Thermal Expansion, µm/m-K 10
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
33 to 37
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
99 to 110

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.0
7.8
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 100
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 110
7.6 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 650
110 to 220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 23 to 27
24 to 25
Strength to Weight: Bending, points 21 to 24
30 to 31
Thermal Diffusivity, mm2/s 8.1
51 to 56
Thermal Shock Resistance, points 23 to 27
12

Alloy Composition

Aluminum (Al), % 0
89 to 94
Carbon (C), % 0.060 to 0.15
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 82.4 to 87.8
0 to 1.2
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 0.35
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 0
0 to 0.35
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
2.0 to 3.0
Sulfur (S), % 0.15 to 0.35
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.35