MakeItFrom.com
Menu (ESC)

EN 1.4005 Stainless Steel vs. EN 1.5501 Steel

Both EN 1.4005 stainless steel and EN 1.5501 steel are iron alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4005 stainless steel and the bottom bar is EN 1.5501 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 13 to 21
12 to 17
Fatigue Strength, MPa 240 to 290
180 to 270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 390 to 450
270 to 310
Tensile Strength: Ultimate (UTS), MPa 630 to 750
390 to 510
Tensile Strength: Yield (Proof), MPa 370 to 500
260 to 420

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 760
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
52
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
1.8
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.0
1.4
Embodied Energy, MJ/kg 28
18
Embodied Water, L/kg 100
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 110
40 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 650
190 to 460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 23 to 27
14 to 18
Strength to Weight: Bending, points 21 to 24
15 to 18
Thermal Diffusivity, mm2/s 8.1
14
Thermal Shock Resistance, points 23 to 27
11 to 15

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0.060 to 0.15
0.13 to 0.16
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 82.4 to 87.8
98.4 to 99.269
Manganese (Mn), % 0 to 1.5
0.6 to 0.8
Molybdenum (Mo), % 0 to 0.6
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0.15 to 0.35
0 to 0.025