MakeItFrom.com
Menu (ESC)

EN 1.4005 Stainless Steel vs. C41500 Brass

EN 1.4005 stainless steel belongs to the iron alloys classification, while C41500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4005 stainless steel and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13 to 21
2.0 to 42
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 390 to 450
220 to 360
Tensile Strength: Ultimate (UTS), MPa 630 to 750
340 to 560
Tensile Strength: Yield (Proof), MPa 370 to 500
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 760
180
Melting Completion (Liquidus), °C 1440
1030
Melting Onset (Solidus), °C 1400
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 30
120
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
28
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
29

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
30
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.0
2.8
Embodied Energy, MJ/kg 28
45
Embodied Water, L/kg 100
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 110
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 350 to 650
160 to 1340
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 23 to 27
11 to 18
Strength to Weight: Bending, points 21 to 24
12 to 17
Thermal Diffusivity, mm2/s 8.1
37
Thermal Shock Resistance, points 23 to 27
12 to 20

Alloy Composition

Carbon (C), % 0.060 to 0.15
0
Chromium (Cr), % 12 to 14
0
Copper (Cu), % 0
89 to 93
Iron (Fe), % 82.4 to 87.8
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0.15 to 0.35
0
Tin (Sn), % 0
1.5 to 2.2
Zinc (Zn), % 0
4.2 to 9.5
Residuals, % 0
0 to 0.5